Math 3210 Tutorial 4

Example 1: Consider the set $y \leq-x^{2}$, try to show that any point on the closure is an extreme point

An important inequality.

If $f(x)$ is convex
fra)

$$
\begin{aligned}
& \lambda f\left(a_{1}\right)+(1-\lambda)+\left(a_{2}\right) \\
& \geqslant f\left(\lambda a_{1}+(1-\lambda) a_{2}\right) . \\
& 0 \leq \lambda \leq 1
\end{aligned}
$$

equality only occur at
linear case
$f(x)$ is concave.
$\lambda f\left(a_{1}\right)+(1-\lambda) f\left(a_{2}\right)$
$\leq f\left(\lambda a_{1}+(1-\lambda) a_{2}\right]$

$$
0 \leqslant \lambda \leqslant 1
$$

If we chose two pointsin the set. caseli both of the points are on the closure $a_{1}\binom{x_{1}}{-x_{1}^{2}} \quad a_{2}=\binom{x_{2}}{-x_{2}^{2}}$
$a_{p}=\frac{\left(x_{1}+t+\lambda-\lambda x_{2} x_{2}\right.}{-\left[-1 x_{i}+(x-2) x^{2}\right]} y_{p}$ Since $f(x)=-x^{2}$ is concave.
i.e it is in the interior.
canes two: 1 it them is not on the closure.

$$
a_{1}\binom{x_{1}}{-x_{1}^{2}} \quad a_{2}\binom{x_{2}}{y_{2}}
$$

where $y_{2}<-x_{2}^{2}$

$$
O p=\binom{\lambda x_{1}+\left(1-x_{2}\right.}{\left(\lambda\left(-x_{1}^{2}\right)+(1-\lambda)-x_{2}^{2}\right)} \quad a_{p}=\binom{\lambda x_{1}+(1-\lambda) x_{2}}{\lambda\left(-x_{1}^{2}\right)+(1-\lambda) y_{2}}
$$

$$
\text { note: } \lambda\left(-x_{1}^{2}\right)+(1-\lambda) y_{2}
$$

$$
\left\langle\lambda\left(-x_{1}^{2}\right)+(1-\lambda)\left(-x_{2}^{2}\right)\right.
$$

Cane three: Same an above

$$
<-\left(\lambda x_{1}+(1-\lambda) x_{2}\right)^{2}
$$

Potential method in finding/ improving basic solution
Step 1: Solve for a feasible solution $A_{1} x_{1}+\cdots+A_{n} x_{n}=B$
Step 2: Solve for no trivial solution among $\alpha_{1} A_{1}+\cdots+\alpha_{n} A_{n}=0$
Step 3: combine the two equation to cancel out a particular variables
Example 2: Try to find a basic solution for the following system
Finding basic solution tran throwing re arranging Consider:

$1^{\text {ht }}$ find a terrible set:

$$
A X=B \quad X=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \quad A_{1}+2 A_{2}+A_{3}=B:-(1)
$$

$2^{\text {nd }}$ try to find a non trivial solution tor

$$
\begin{aligned}
& Q_{1} A_{1}+C_{2} A_{2}+U_{3} A_{3}=0 \\
& 2 A_{1}-A_{2}+A_{3}=0
\end{aligned}
$$

Want to find the solution that $X_{2}=0$

$$
X_{1} A_{1}+X_{2} A_{2}=B_{1}
$$

From（2）$\quad 2 A_{1}+A_{3}=A_{2}$

$$
A_{1}+2\left(2 A_{1}+A_{3}\right)+A_{3}=B
$$

$$
\bar{S} A_{1}+3 A_{3}=B
$$

$\left(\begin{array}{l}5 \\ 6 \\ 3\end{array}\right)$ is a teoside basic solution e
Next：try to set $x_{3}=0$

$$
\begin{aligned}
&(2) \rightarrow A_{3}= A_{2}-2 A_{1} \\
&(1) \rightarrow A_{1}+2 A_{2}+\left(A_{2}-2 A_{1}\right)=B_{1} \\
& A_{2}-A_{1}=B \rightarrow \text { Not terrible. }
\end{aligned}
$$

More on basic solution and extreme
points
Basic criteria for finding a basic solution for it to correspond to an extreme point：
Some Big Procure＋Example（平行日来空）

Example 3：
Step 1：Find a terrible set of Solution

Step 2：Find Assure A_{1}, \cdots Ap are L．D．
find a ron trivial sdutan for $\quad \omega_{1}\left(\frac{2}{4}\right)+\phi_{2}\binom{7}{11}+\phi_{i}\binom{\hat{1}}{1}=0$

$$
Q_{1} A_{1}+O_{2} A_{2}+\cdots+\Delta_{p} A_{p}=0
$$

$$
\phi_{1}=2 \quad \theta_{2}=-1 \quad \phi_{3}=1
$$

Step 3：Reduce A_{1}, \cdots, A_{p}

$$
Q_{1} \stackrel{\rightharpoonup}{A}_{1}+\Delta_{2} \stackrel{\rightharpoonup}{A}_{2}+\cdots+\stackrel{U}{p}^{\stackrel{\rightharpoonup}{A}} ⿱ ⺊ 口 灬=0
$$

$$
\begin{equation*}
\stackrel{\rightharpoonup}{A_{r}}=-\frac{\theta_{1}}{Q_{r}} \stackrel{\rightharpoonup}{A}_{1}-\cdots-\frac{\theta_{p} \stackrel{\rightharpoonup}{A}_{n}}{\omega_{r}} \tag{3}
\end{equation*}
$$

out r ．

$$
\begin{aligned}
& \left((A) \cdots\left(A_{0}\right)-1\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p} \\
g \\
j
\end{array}\right)=B \quad A=\left(\begin{array}{ccc}
2 & 7 & 3 \\
5 & 11 & 1
\end{array}\right) \\
& B=\binom{15}{18} \\
& x=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \quad x_{1}=1 \quad x_{2}=1 \quad x_{3}=2
\end{aligned}
$$

Step 4:

$$
\begin{aligned}
& A_{1}+\sqrt{1} A_{2}+2 A_{3}=B \\
& 2 A_{1}-A_{2}+A_{3}=0 \\
& A_{1}=\frac{1}{2}\left(A_{2}-A_{3}\right) . \\
& \frac{1}{2}\left(A_{2}-A_{3}\right)+A_{2}+2 A_{3}=B . \\
& \frac{3}{2} A_{2}+\frac{3}{2} A_{3}=B .
\end{aligned}
$$

Boric $\left(\begin{array}{l}0 \\ \frac{3}{2} \\ \frac{3}{2}\end{array}\right)$
Step 5:
Check whether $\left(A_{2}, A_{3}\right)$ are linearly independent

Some important reminder:

Example 4:

$$
\ln d x_{i}=3 x_{1}+4 x_{2}-2 x_{3}=2
$$

Subject to:

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3}+5_{1} & =8 \\
2 x_{1}+10 x_{2}+4 x_{3}+5_{2} & =26 \\
4 x_{1}+8 x_{2}+2 x_{3}+5_{3} & =22
\end{aligned}
$$

Try to from a basic solution by settivy. $S_{1}=S_{2}=S_{3}=0$

$$
\left(\begin{array}{ccc:c}
1 & 3 & 1 & 8 \\
2 & 10 & 4 & 26 \\
4 & 8 & 2 & 22
\end{array}\right)
$$

$$
\begin{equation*}
\vec{A}_{1} X_{1}+\vec{A}_{2} \quad \vec{A}_{1}+2 \stackrel{\rightharpoonup}{A_{2}}+\stackrel{\rightharpoonup}{A_{3}}=\stackrel{\rightharpoonup}{b} \tag{1}
\end{equation*}
$$

and $\vec{A}_{1} \Phi \vec{A}_{2}+2 \vec{A}_{3}=0$

$$
\begin{equation*}
x_{1}=1 \tag{2}
\end{equation*}
$$

$$
\psi_{1}=1 \quad \psi_{2}=-1 \quad \psi_{3}=2 .
$$

$$
\begin{aligned}
\stackrel{\rightharpoonup}{A_{1}}= & \stackrel{\rightharpoonup}{A_{3}}-2 \vec{A}_{3}-(3) \\
& \stackrel{\rightharpoonup}{3} \vec{A}_{2}-\vec{A}_{3}=\stackrel{\rightharpoonup}{h} \rightarrow \text { Not feasible. }
\end{aligned}
$$

Try 秋 kick oul x_{2}

$$
\begin{aligned}
\stackrel{\rightharpoonup}{A}_{2}= & \vec{A}_{1}+2 \vec{A}_{3} \\
& 3 \vec{A}_{1}+3 \vec{A}_{3}=b
\end{aligned}
$$

re a rrong

$$
\begin{aligned}
& \left(\begin{array}{c}
3 \\
0 \\
3 \\
0 \\
\vdots \\
0
\end{array}\right] \text {-7is a delution. }
\end{aligned}
$$

