Math 3210 Tutorial 4

Example 1: Consider the set $y \leq -x^2$, try to show that any point on the closure is an extreme point

e need to prove that it P is not an extreme point, then it hot on the boundary of $y = -x^2$. It we chose two points that is in the set, any point in be tween will not be on the Closure. It is in the interior.	the point to be in the interior the point to be in the interior $he to prove that it P is not an extreme point, then it point on the boundary of y = -x^2.It we chose a prives that is in the set,any point in be tween will not be on the(losure.i.e in the interior.)$			
It we chose @ points that is in the set, any point in be tween will not be on the closure. i.e in the interior.	The point to be in the interior	le need to prove that it p 5 hot on the boundary of	is not an extreme p $y=-x^2$.	oint, then it
	r the point to be in the interior	It we chose the any point Obsare.	no points that is in the time will n t in be tween will n n the interior.	the on the

An important inequality.
It top is convex
$$f(x)$$
 is concave
f(x)
 $\lambda t(a_1) + (1-\lambda) t(a_2)$
 $p = f(\lambda a_1 + (1-\lambda) 0_2)$.
 $0 \le \lambda \le 1$
equality only occur at
linear case
If we chose two points in the set.
cose 1: both of the points are on the closure
 $a_i \left\{ \frac{x_1}{x_1} \right\} = \frac{x_1 + c_1 x_1 x_2}{c_1 x_2}$
 $\Delta p = \frac{(x_1 + c_2 x_1 x_2)}{(x_1 + c_2 x_2) + (x_2) + (x_$

Coves two = 1 of them is not on the dosure. 01 Where yoka Xz di 02 d2 why. where 4, < - X2 Ob $a_{p^{2}}(\lambda X, +(1-\lambda)X_{2})$ E $\lambda(-x^{2})+(1-x)y,$ note: X(-X12) + (1 く入(-X12) + (1- $< -(\lambda X_{1} + (1-))$ Cube three: Same ay above

Potential method in finding/ improving basic solution

Step 1: Solve for a feasible solution $A_1x_1 + \cdots + A_nx_n = B$
Step 2: Solve for no trivial solution among $\alpha_1 A_1 + \dots + \alpha_n A_n = 0$
Step 3: combine the two equation to cancel out a particular variables

Example 2: Try to find a basic solution for the following system

Finding bourie solution two through rearrouging.
Consider:

$$A = \begin{pmatrix} 1 & 5 & 3 \\ -4 & 9 & 1 \\ -4 & 9 & 1 \\ -4 & 9 & 1 \\ -4 & -4 & -23 \end{pmatrix}$$

$$A_1 = A_2 = A_1 + 2A_2 + A_3 = B = -10$$

$$A = B = X = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

$$A_1 + 2A_2 + A_3 = B = -10$$

$$2^{nd} = try = to = trivial = solution =$$

to find Want the solution that X2 = 0 $\begin{array}{l} X_1 A_1 + X_2 A_2 = \beta_1 \\ \hline (2) \quad Z A_1 + A_3 = A_2 \end{array}$ From (2) $\begin{array}{c} (A_1 + 2(2A_1 + A_2) + A_3 = B) \\ \overline{S}A_1 + \overline{S}A_3 = B \end{array}$ is a sulu is a teographie basic solution Next: try to set X, =0 $\begin{array}{l} (2) & -7 & A_3 = A_2 - 2A_1 \\ (1) & -7 & A_1 + 2A_2 + (A_2 - 2A_1) = B_1 \end{array}$ Az-A, = B -7 Not feasible.

More on basic solution and extreme

points

Basic criteria for finding a basic solution for it to correspond to an extreme point:

Rig Picture + Example (4/17)B Some F.S > Bayic Fearible Soluting Turning 01 invertible (A. Am =B $\left| \begin{array}{c} \mathbf{x}_{m} \\ \mathbf{x}_{m} \end{array} \right| = \mathbf{B}.$

Example 3:

Find a teagible set of solution Step 1: A= XI . 7 2 3 =B A) --- (Ap))-511 Xp 15 B= after rearrangement 18 remark X= $X_1 = | X_2 = 1 | X_3 = 2$ Step 2: FENd Assume A, 1-, Apare L.D. $Q_1(\frac{2}{5}) + Q_2(\frac{2}{11}) + Q_1(\frac{2}{1}) = 0$ find a non-trivial solution For Q, A, to, A, + - + Q, Ap =0 $\varphi_1 = 2 \quad \varphi_2 = -1 \quad \varphi_3 = 1$ Step 3: Reduce Ai, -, Ap DiA, tq.A. t - t qpAp=0 F-N Q, AI tat - QFIAr-1 - Qr+1 Art -- - OpAp $-\frac{\varphi_1}{\varphi_1}A_1 - \cdots - \varphi_pA_p$ (3) Out r-

 $\overrightarrow{A}_{1}X_{1} + \cdots + \overrightarrow{A}_{1}X_{r} + - \overrightarrow{A}_{r}X_{p} = \beta \cdot - (1)$ (3) into (0) $\frac{X_1}{\Phi_1} = \frac{1}{2} \frac{X_2}{\varphi_2} = \frac{Y_3}{\varphi_3} = 2.$ $\frac{1}{A_1 X_1 + \cdots + A_{r+1} X_{r-1} + \left(-\frac{\omega_1}{\omega_r} + \frac{1}{A_{r-1}} - \frac{\omega_r}{\omega_r} + \frac{1}{A_n}\right) X_r}{\operatorname{Out} r}$ reduce X1. Outr +. + Aptp. = B r $A_1(X_1 - Q_1X_r) + A_2(X_2 - Q_1 \frac{X_r}{Q_1}) +$ $+ + Hp(X_p - Q_p X_r) = B$ X - U tr tind the rse X2-92 Fr Xr-1-9r1 Xr Xr+1-9r4 Xr X'i Xr >0 and minimised. Xp - Yp yr

5tep 4: $A_1 + QA_2 + 2A_3 = B$ 2A, -A2+A3=0 $A_1 = \frac{1}{2}(A_2 - A_3).$ - (A2 - A3) + A2 + 2A3= B. $\frac{3}{2}A_2 + \frac{3}{2}A_3 = B$, Boyil 103/2 3/2 Step 5. Check whether (A2, A3) are linearly independent.

Some important reminder:

Example 4:

Max: 3x, +4x2-2x3=2 Subject to: $\begin{array}{rcl} \chi_{1} + 3\chi_{2} + \chi_{3} + 5_{1} &= 8 \\ 2\chi_{1} + 0\chi_{2} + 4\chi_{3} &+ 5_{2} &= 26 \\ 4\chi_{1} + 8\chi_{2} + 2\chi_{3} &+ 5_{3} &= 22 \end{array}$ Try to from a basic solution by setting. 51=52=53=0 3118 2 10 4 26 BX=b 4 8 2,22 , teasible Z B X= b X= 0 $\overrightarrow{A}, \overrightarrow{X}, \overrightarrow{FA}, \overrightarrow{A}, + 2\overrightarrow{A}, + \overrightarrow{A}, = \overrightarrow{b} - (\overrightarrow{b})$ and $\overrightarrow{A}, \overrightarrow{FA}, + 2\overrightarrow{A}, = \overrightarrow{b} - (\overrightarrow{b})$ 0 D $X_1 = 1$ $X_2 = 2$ $X_3 = 3$ $\varphi_1 = 1$ $\varphi_2 = -1$ $\varphi_3 = 2$ $A_{1} = A_{2} - 2A_{3} - (3)$ 3A, -A, = b - Not teasible.

try Ab Kick out X2 $\vec{A}_2 = \vec{A}_1 + 2\vec{A}_3$ $\vec{A}_1 + 3\vec{A}_3 = b$ rearrang 3 = 0 (A,A 3 0 4 0 0 Sidegenerating. B 3 03 -15 a degenerativy boyic solution. 0